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Abstract. Knowledge graph embedding (KGE) models have become
popular for their efficient and scalable discoveries in knowledge graphs.
The models learn low-rank vector representations from the knowledge
graph entities and relations. Despite the rapid development of KGE
models, state-of-the-art approaches have mostly focused on new ways
to represent embeddings interaction functions (i.e., scoring functions).
However, we argue that the choice of a training loss function can have a
substantial impact on a model’s efficiency, which has been rather neglected
by the state of the art so far. In this paper, we provide a thorough analysis
of different loss functions that can help with the procedure of embedding
learning, providing a reduction of the evaluation metric based error. We
experiment with the most common loss functions for KGE models and
also suggest a new loss for representing training error in KGE models.
Our results show that a loss based on training error can enhance the
performance of current models on multiple datasets.

1 Introduction

The recent advent of knowledge graph embedding (KGE) models has allowed
for scalable and efficient manipulation of large knowledge graphs (KGs), im-
proving the results of a wide range of tasks such as link prediction [3,21], entity
resolution [15,2] and entity classification [16]. KGE models operate by learning
embeddings in a low-dimensional continuous space from the relational informa-
tion contained in the KG while preserving its inherent structure. Specifically,
their objective is to rank knowledge facts—relational triples (s, p, o) connecting
subject and object entities s and o by a relation type p—based on their relevance.
Various interactions between their entity and relation embeddings are used for
computing the knowledge fact ranking. These interactions are typically reflected
in a model-specific scoring function. For instance, TransE [3] uses a scoring
function defined as the distance between the o embedding and the translation of
the embedding associated to s by the relation type p embedding. DistMult [22],
ComplEx [19] and HolE [14] use multiplicative composition of the entity embed-
dings and the relation type embeddings. This leads to a better reflection of the
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relational semantics and to state-of-the-art performance results (see [20] for a
review).

Although there is a growing body of literature proposing different KG models
(mostly focusing on the design of new scoring functions), the study of loss
functions—a core part of the learning process—has not received much attention
to date. This has already been shown to influence the behaviour of the KGE
models. For instance, [9] observed that despite the different motivations behind
HolE and CompleEx models, they have equivalent scoring functions. Yet their
performance still differs. In [18], the authors conclude that this difference is caused
by the fact that HolE uses a max-margin loss while ComplEx uses a log-likelihood
loss, showing that loss functions are important for thorough understanding, and
even improvement of the performance of different KGE models. However, a
comprehensive study is still missing.

In this paper, we focus on comparing different loss functions when applied
to several representative KGE models. By performing a systematic analysis of
the performance (in terms of Mean Reciprocal Rank, MRR) of different models
using different loss functions, we hope to contribute towards improving the
understanding of how loss functions influence the behaviour of KGE models
across different benchmark datasets.

The summary of our contributions is as follows:

(a) We provide a comprehensive analysis of training loss functions as used in
several state-of-the-art KGE models (Section 2);

(b) We preform an empirical evaluation of different KGE models with different
loss functions, and show the effect of different losses on the KGE models
predictive accuracy (Section 3);

(c) We propose a new formulation for a KGE loss that can provide enhancements
to the performance of KGE models. Section 3 demonstrates experimentally
that the proposed loss function can enhance performance of state-of-the-art
KGE models over multiple datasets.

2 Loss Functions in KGE Models

Generally, KGE models are cast as learning to rank problems. They employ
multiple training loss functions that comply with the ranking loss approaches.
In the state-of-the-art KGE models, loss functions were designed according to
various pointwise and pairwise approaches that we review next.

2.1 KGE Pointwise Losses

First, we discuss existing pointwise loss functions for KGE models, namely, square
error (SE), hinge, and logistic losses. Let x ∈ X be one fact of the KG, f a
scoring function, and l a labelling function.
Pointwise Square Error Loss (SE). SE is the ranking loss function used in
RESCAL [15]. It models training losses with the objective of minimising the
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squared difference between model scores and labels (expected output):

L
SEPt

=
1

2

∑
x∈X

(f(x)− l(x))2.

The optimal score for true and false facts is 1 and 0, respectively. A nice to
have characteristic of SE loss is that it does not require configurable training
parameters, shrinking the search space of hyper parameters compared to other
losses (e.g., the margin parameter of the hinge loss).
Pointwise Hinge Loss. Hinge loss can be interpreted as a pointwise loss, where
the objective is to generally minimise the scores of negative facts and maximise
the scores of positive facts to a specific configurable value. This approach is used
in HolE [14], and it is defined as:

L
hingePt

=
∑
x∈X

[λ− l(x) · f(x)]+,

where l(x) = 1 if x is true and −1 otherwise, and [x]+ denotes max(x, 0). This
effectively generates two different loss slopes for positive and negative scores.
Thus, the objective resembles a pointwise loss that minimises negative scores to
reach −λ, and maximises positives scores to reach λ.
Pointwise Logistic Loss. The ComplEx [19] model uses a logistic loss, which is
a smoother version of pointwise hinge loss without the margin parameter. Logistic
loss uses a logistic function to minimise the negative triples score and maximise
the positive triples score. This is similar to hinge loss, but uses a smoother linear
loss slope defined as:

L
logisticPt

=
∑
x∈X

log(1 + exp(−l(x) · f(x))),

where l(x) is the true label of fact x where it is equal to 1 for positive facts and
is equal to −1 otherwise.

Taking the best of the previous loss functions, we propose a new pointwise
loss, called the Pointwise Square Loss (PSL), which combines the square growth
of SE and the configurable margin of hinge loss.
Pointwise Square Loss (PSL). In the SE loss, the objective is to set the
scores of negative and positive instances to 0 and 1, respectively. As a result,
the scores of negative instances that are less than 0, and the scores of positive
instances that are greater than 1 are penalised despite their actual compliance
with the main training objective: ∀x∈X+∀x′∈X−f(x) > f(x′), where X+ and X−
are the sets of positive and negative facts, respectively. Therefore, we propose
a new loss, PSL, that allows scores of positive instances to grow and scores of
negative instances to decrease without boundaries. We also use a configurable
value λ instead of 0 and 1 to allow for more search configurations as in hinge
and logistic losses. PSL is defined as:

L
PSLPt

=
1

2

∑
x∈X

([λ− l(x) · f(x)]+)2,
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Fig. 1. Plots of growth of pairwise margin-based losses: compared to its margin with
default λ = 1 and α = 0.5.

where l(x) = 1 if x is true and −1 otherwise. We can see that PSL can
be made equivalent to squared hinge loss by defining it as LPSLPt

(f ;X, l) =
LhingePt

(f ;X, l)2.

2.2 KGE Pairwise Losses

Here, we discuss established pairwise loss functions in KGE models, and present
two new proposed loss functions, namely tanh and softsign losses. Fig. 1 shows
the set of pairwise loss functions to be discussed in this subsection.
Pairwise Hinge Loss. Hinge loss is a linear learning-to-rank loss that it is used
for maximum-margin classification and can be implemented in both pointwise or
pairwise settings. TransE [3] and DistMult [22] models use the pairwise margin
based hinge loss. It is defined as:

L
hingePr

=
∑

x∈X+

∑
x′∈X−

[λ+ f(x′)− f(x)]+,

whereX+ is the set of true facts,X− is the set of false facts, and λ is a configurable
margin. In this case, the objective is to maximise the difference between the scores
of negative and positive instances by a good margin. This approach optimises
towards having embeddings that satisfy ∀x∈X+∀x′∈X−f(x) > f(x′) as in Fig. 1.
Pairwise Logistic Loss. Logistic loss can also be interpreted as pairwise margin
based loss following the same approach as in hinge loss. The loss is defined as:

L
logisticPr

=
∑

x∈X+

∑
x′∈X−

log(1 + exp(f(x′)− f(x))),

where the objective is to minimise marginal difference between negative and
positive scores with a smoother linear slope than hinge loss as shown in Fig. 1.

2.3 KGE Multi-Class Losses

Recent KGE approaches have addressed the ranking problem as a multi-class
classification. Next, we discuss how this is done.
Binary Cross Entropy Loss. ConvE model [5] proposed a new binary cross
entropy multi-class loss to model its training error. In this setting, the whole
vocabulary of entities is used to train each positive fact such that for a triple
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(s, p, o), all facts (s, p, o′) with o′ ∈ E and o′ 6= o are considered false. Despite the
extra computational cost of this approach, it allowed ConvE to generalise over a
larger sample of negative instances and outperform other approaches [5].
Negative-Log Softmax Loss. In a recent work, Lacroix et. al. [10] introduced
a softmax regression loss to model training error of the ComplEx model as a
multi-class problem. In this approach, the objective for each triple x = (s, p, o) is
to minimise the following loss:

Lsoftmax
spo = Lo′

spo +L
s′

spo , s.t.

Lo′

spo = −fspo + log(
∑

o′
exp(fspo′))

Ls′

spo = −fspo + log(
∑

s′
exp(fs′po))

(1)

where s′ ∈ E, s′ 6= s, o′ ∈ E and o′ 6= o. This resembles a log-loss of the softmax
value of the positive triple compared to all possible object and subject corruptions,
where the objective is to maximise positive facts scores and minimise all other
scores. This approach achieved significant improvement to the prediction accuracy
of ComplEx model over all benchmark datasets when used with the 3-nuclear
norm regularisation of embeddings [10].

2.4 Negative Sampling for KGE Losses

In learning to rank approaches, models use a ranking loss, e.g., pointwise or
pairwise loss to rank a set of true and negative instances [4], where negative
instances are generated by corrupting true training facts with a ratio of negative
to positive instances [3]. This corruption happens by changing either the subject
or object of the true triple instance. In this configuration, the ratio of negative
to positive instances is traditionally learnt using a grid search, where models
compromise between the accuracy achieved by increasing the ratio and the
runtime required for training.

On the other hand, multi-class based models train to rank positive triples
against their all possible corruptions as a multi-class problem where the range of
classes is the set of all entities. For example, training on a triple (s, p, o) is achieved
by learning the right classes "s" and "o" for the pairs (?, p, o) and (s, p, ?), where
the set of possible classes is E of size Ne. Despite the enhancements of predictions
accuracy achieved by such approaches [5,10], such negative sampling procedure
is exhaustive and require high space complexity due to the usage of the entire
entity vocabulary for each triple.

3 Experiments

In this section, we describe the experiments conducted on three state-of-the-art
KGE models, namely, TransE [3], DistMult [22] and ComplEx [19] (equivalent to
HolE [9]), using the previously discussed loss functions. TransE is a distance-based
scoring function, while DistMult and ComplEx are multiplicative scoring functions.
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Table 1. Characteristics of the datasets.

Dataset # Entities # Relations |Train| |Valid| |Test|

WN18 41k 18 141k 5k 5k
WN18RR 41k 11 87k 3k 3k
NELL50k 50k 497 159k 5k 5k
NELL239 48k 239 74k 3k 3k
FB15k-237 15k 237 272k 18k 20k

We present the benchmarking datasets, experiments setup, and implementation
details including software and hardware configurations.
Benchmarking Datasets. In our experiments we use six knowledge graph
benchmark datasets:

– WN18 & WN18RR: subsets of Wordnet dataset [11] that contain lexical
information of the English language [3,5].

– NELL50k & NELL239: subsets of NELL dataset [6,7] that we have created
to test our model, which contains general knowledge about people, places,
teams, universities, etc.

– FB15k-237: a subset of the Freebase dataset [1] that contains information
about general human knowledge [17].

Table 1 contains the characteristics of our benchmark datasets3.
Evaluation Protocol. The three KGE models are evaluated using a unified
protocol that assesses their performance in the task of link prediction. Let X be
the set of facts (triples), ΘE be the embeddings of entities E, and ΘR be the
embeddings of relations R. The KGE evaluation protocol works in three steps:

(1) Corruption: For each x = (s, p, o) ∈ X, x is corrupted 2|E| − 1 times by
replacing its subject and object entities with all the other entities in E. The
corrupted triples can be defined as:

xcorr =
⋃

s′∈E
(s′, p, o) ∪

⋃
o′∈E

(s, p, o′)

where s′ 6= s and o′ 6= o. These corruptions are considered effectively negative
examples for the supervised training and testing process under the Local Closed
World Assumption [13].

(2) Scoring : Both original triples and corrupted instances are evaluated using
a model-dependent scoring function. This process involves looking up embeddings
of entities and relations, and computing scores depending on these embeddings.

(3) Evaluation: Each triple and its corresponding corruption triples are
evaluated using the reciprocal ranking metric as a separate query, where the
original triples represent true objects and their corruptions false ones. It is
possible that corruptions of triples may contain positive instances that exist
3 All the benchmark datasets and experimental results are available for download in
the following url: https://figshare.com/s/8c2f1e1f98aff44b5b71

https://figshare.com/s/8c2f1e1f98aff44b5b71
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Table 2. Link prediction results for KGE models with different loss functions on
standard benchmark datasets. (*) represents the models’ default loss function. In the
ranking losses, best results are computed per model: bold results represent the model’s
best result and underlined results represent the best result in a loss approach. In
multi-class losses, best results are computed across all models.

Model Approach Loss
WN18 WN18RR NELL50k NELL239 Fb15k-237

MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10

R
an

ki
ng

L
os
s

TransE

Pairwise
Hinge ∗ 0.52 0.95 0.20 0.47 0.76 0.91 0.28 0.43 0.27 0.43
Logistic 0.53 0.92 0.21 0.48 0.71 0.86 0.27 0.43 0.26 0.43

Pointwise

Hinge 0.15 0.38 0.12 0.34 0.28 0.40 0.19 0.32 0.12 0.25
Logistic 0.14 0.36 0.11 0.31 0.26 0.38 0.17 0.31 0.01 0.23

SE 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.01 0.01
PSL 0.20 0.49 0.12 0.33 0.38 0.54 0.19 0.33 0.11 0.24

DistMult

Pairwise
Hinge ∗ 0.77 0.89 0.40 0.45 0.45 0.60 0.20 0.32 0.10 0.16
Logistic 0.79 0.93 0.39 0.45 0.68 0.83 0.26 0.40 0.19 0.36

Pointwise

Hinge 0.85 0.95 0.43 0.49 0.81 0.92 0.25 0.41 0.21 0.39
Logistic 0.77 0.93 0.43 0.50 0.70 0.84 0.28 0.43 0.20 0.39

SE 0.81 0.95 0.43 0.50 0.81 0.94 0.31 0.48 0.22 0.40
PSL 0.85 0.95 0.40 0.46 0.85 0.94 0.24 0.40 0.20 0.38

ComplEx

Pairwise
Hinge 0.94 0.95 0.39 0.45 0.86 0.94 0.24 0.38 0.20 0.35
Logistic 0.91 0.95 0.41 0.47 0.72 0.86 0.27 0.43 0.19 0.35

Pointwise

Hinge 0.91 0.95 0.41 0.47 0.86 0.95 0.21 0.36 0.20 0.39
Logistic ∗ 0.94 0.95 0.36 0.39 0.85 0.94 0.14 0.24 0.13 0.28

SE 0.95 0.96 0.47 0.53 0.82 0.94 0.35 0.52 0.22 0.41
PSL 0.94 0.95 0.41 0.45 0.90 0.96 0.24 0.40 0.24 0.43

M
ul
ti
-c
la
ss

lo
ss CP

- BCE - - - - - - - - - -
- Softmax 0.12 0.18 0.08 0.12 - - - - 0.22 0.42

DistMult
- BCE 0.82 0.94 0.43 0.49 - - - - 0.24 0.42
- Softmax 0.81 0.95 0.43 0.50 0.91 0.96 0.39 0.55 0.34 0.53

ComplEx
- BCE 0.94 0.95 0.44 0.51 - - - - 0.25 0.43
- Softmax 0.92 0.95 0.44 0.52 0.94 0.97 0.40 0.58 0.35 0.53

among training or validation triples. In our experiments, we alleviate this problem
by filtering out positive instances in the triple corruptions. Therefore, MRR and
Hits@k are computed using the knowledge graph original triples and non-positive
corruptions [3].
Implementation. We use TensorFlow framework (GPU) along with Python 3.5
to implement the KGE models. Experiments were executed on a Linux machine
with processor Intel(R) Core(TM) i70.4790K CPU @ 4.00GHz, 32 GB RAM, and
an nVidia Titan X GPU.
Experimental Setup. In the experiments, we use state-of-the-art KGE models
TransE, DistMult, and ComplEx to analyse the impact of various loss functions.
We run these models over the previously mentioned benchmark datasets. A grid
search was performed to obtain the best hyperparameters for each model4. In
all our experiments, the set of investigated parameters are: embeddings size
K ∈ {50, 100, 150, 200} and margin λ ∈ {1, 2, 3, 4, 5}. We use a fixed learning rate
of 0.1 and generate two corruptions per triple during training. All embeddings
4 Detailed results and best hyperparameters can be found at: https://figshare.com/
s/8c2f1e1f98aff44b5b71

https://figshare.com/s/8c2f1e1f98aff44b5b71
https://figshare.com/s/8c2f1e1f98aff44b5b71
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vectors of our models are initialised using the uniform Xavier random initialiser [8].
We use 10 mini-batches per epoch, with a maximum of 1,000 epochs for training.
We implemented early stopping for the training with a target MRR metric that
is checked every 50 epochs (i.e., training stops if the filtered MRR decreases).

4 Results and Discussion

Table 2 shows evaluation results for KGE models using different loss functions
on standard benchmark datasets.

4.1 Ranking Losses

The results clearly show that changing the models’ default loss functions can
improve the reported performance of the KGE models. Moreover, the loss function
we have proposed, PSL, enhances models’ performance on multiple datasets. For
example, the DistMult model uses pairwise hinge loss by default, but its version
with the PSL function achieve 1.2% and 7.1% better MRR scores on WN18 and
NELL50k datasets, and its version with SE loss provides best result on the other
datasets. On the other hand, ComplEx originally uses pointwise logistic loss,
but its version with SE loss results in better MRR score on WN18, WN18RR
and NELL239 datasets. ComplEx using PSL version achieves the best results in
terms of MRR on the NELL50k and FB15k-237 datasets.

In addition to confirming our main assumption, the results provide for an
interesting observation. The versions of the TransE model with pairwise loss
functions consistently achieve better results in terms of mean rank, MRR, and
Hits@k when compared to the versions with pointwise losses. Conversely, the
DistMult and ComplEx models achieve the best MRR and Hits@k scores when
pointwise losses are used. This behaviour is likely caused by the fact that the
models use different scoring approaches: TransE scores triples using distances in
the embedding space, but DistMult and ComplEx use a multiplicative approach.
This observation may be used for designing optimal combinations of scoring and
cost functions in future KGE models. However, for a truly comprehensive recom-
mendation, more thorough analysis of other distance-based and multiplicative
scoring functions is required.

In terms of the type of cost function, the results show that the models with
our proposed pointwise square loss (PSL) function outperform their versions
with other pointwise losses (the MRR score is better in 7 out of 15 experiment
configurations of TransE, DistMult, and ComplEx models on all datasets).

An important technical observation is that the number of configurable pa-
rameters of a loss function has a significant impact on the time required for
training the corresponding model. The training time grows exponentially with
respect to the number of hyperparameters used in training. Pointwise SE and
both pointwise and pairwise logistic losses do not have configurable parameters,
therefore they require minimal training time when compared to other losses with
additional configurable parameters. Even the margin based loss functions that
require only one parameter, λ, have significantly slower training time than SE
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and logistic losses. In our experiments, models with configurable margin losses
required 5 times more training time than model using losses with no configurable
parameters as we searched for best margin λ in a set of five elements.

In ranking loss functions, the differences in evaluation accuracy of models
using different loss functions can be sometimes relatively small. In real world
large scale knowledge graph applications, the choice of training loss function for a
KGE model will therefore always involve a compromise between both evaluation
accuracy and training time efficiency.

4.2 Multi-Class Losses

Results of multi-class loss shows that models’ versions with negative-log softmax
loss outperform their versions with BCE loss over all datasets. Also, it shows
that multi-class loss can provide significant improvement in terms of MRR over
ranking losses as on NELL239 and FB15k-237 datasets.

Despite the enhancements of predictions accuracy achieved by multi-class
loss approaches [5,10], they can have scalability issues in real-world knowledge
graphs with a large number of entities as they use the full entities vocabulary as
negative instances [12].

5 Conclusions and Future Work

In summary, our results clearly confirm all our key assumptions. First of all, the
choice of a loss function does have a considerable impact on the performance
of KGE models. Secondly, loss functions can be consciously selected in a way
that can optimise particular evaluation metrics. This marks a big improvement
over state-of-the-art approaches where the cost functions have been selected in
a rather non-systematic way. Last but not least, we have brought up several
interesting observations that can inform more rational and efficient design of
future KGE models.

For future work, we intend to experiment with models that use a sampled
multi-class approach, i.e., they sample negatives as a portion of the vocabulary
rather that the whole vocabulary. We also aim to study the different properties
of KGs and their effects on the performance of KGE models.
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